Abstract

Multi-drug resistance (MDR) in cancer cells is often associated with overexpression of P-glycoprotein (P-gp or ABCB1 or MDR1); therefore, modulators of this transporter might be helpful in overcoming MDR. In this study, 16 novel unsymmetrical dihydropyridine (DHP) derivatives bearing 2-pyridyl methyl carboxylate at C3and a nitroimidazole or nitrophenyl ring at C4positions of the DHP ring were synthesized. Their cytotoxicity was tested against four human cancer cells by MTT assay. The reversal capacity of MDR was examined in P-gp overexpressing cells (MES-SA/DX5) by measuring the alteration of doxorubicin’s IC50and performing flow cytometric determination of intracellular rhodamine 123 accumulation. The calcium channel blocking (CCB) activity, as a side effect of DHPs, was tested on the ileum of a guinea pig. Molecular docking was performed to explain the binding mode of compounds. Two derivatives, 4a and 4c, containing 4-nitrophenyl at C4and possessing methyl (4a) and iso-propyl (4c) carboxylates at the C5position of DHP core demonstrated superior cytotoxic and MDR reversal activities and lower CCB effect. Docking analysis confirmed the importance of the 4-nitrophenyl ring for P-gp inhibitory activity. Some of the synthesized DHP derivatives with considerable MDR reversal capacity could be promising compounds for further discovery of useful agents for management of drug resistant cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call