Abstract

Elucidating the events that underpin the transition from androgen-dependent to castrate-resistant prostate cancer (CRPC) remains a clinical challenge. In this issue of Cancer Research, Gao and colleagues identify that the γ-aminobutyric acid (GABA) shunt is upregulated with the onset of CRPC, via phosphorylation and activation of glutamate decarboxylase (GAD) 65. Overproduction of GABA, an oncometabolite, can directly regulate nuclear androgen receptor signaling to drive tumorigenesis, thereby providing a link between aberrant metabolism and protumorigenic signaling in advanced prostate cancer. The findings from this study support exploring the GABA shunt, GAD65 in particular, as a molecular target in the treatment of CRPC.See related article by Gao et al., p. 4638.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.