Abstract

As the acquisition of very high resolution (VHR) satellite images becomes easier owing to technological advancements, ever more stringent requirements are being imposed on automatic image interpretation. Moreover, per-pixel classification has become the focus of research interests in this regard. However, the efficient and effective processing and the interpretation of VHR satellite images remain a critical task. Convolutional neural networks (CNNs) have recently been applied to VHR satellite images with considerable success. However, the prevalent CNN models accept input data of fixed sizes and train the classifier using features extracted directly from the convolutional stages or the fully connected layers, which cannot yield pixel-to-pixel classifications. Moreover, training a CNN model requires large amounts of labeled reference data. These are challenging to obtain because per-pixel labeled VHR satellite images are not open access. In this paper, we propose a framework called the unsupervised-restricted deconvolutional neural network (URDNN). It can solve these problems by learning an end-to-end and pixel-to-pixel classification and handling a VHR classification using a fully convolutional network and a small number of labeled pixels. In URDNN, supervised learning is always under the restriction of unsupervised learning, which serves to constrain and aid supervised training in learning more generalized and abstract feature. To some degree, it will try to reduce the problems of overfitting and undertraining, which arise from the scarcity of labeled training data, and to gain better classification results using fewer training samples. It improves the generality of the classification model. We tested the proposed URDNN on images from the Geoeye and Quickbird sensors and obtained satisfactory results with the highest overall accuracy (OA) achieved as 0.977 and 0.989, respectively. Experiments showed that the combined effects of additional kernels and stages may have produced better results, and two-stage URDNN consistently produced a more stable result. We compared URDNN with four methods and found that with a small ratio of selected labeled data items, it yielded the highest and most stable results, whereas the accuracy values of the other methods quickly decreased. For some categories with fewer training pixels, accuracy for categories from other methods was considerably worse than that in URDNN, with the largest difference reaching almost 10%. Hence, the proposed URDNN can successfully handle the VHR image classification using a small number of labeled pixels. Furthermore, it is more effective than state-of-the-art methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call