Abstract

In this paper, we proposed an unsupervised terrain and land-use classification algorithm using polarimetric synthetic aperture radar data. Unlike other algorithms that classify pixels statistically and ignore their scattering characteristics, this algorithm not only uses a statistical classifier, but also preserves the purity of dominant polarimetric scattering properties. This algorithm uses a combination of a scattering model-based decomposition developed by Freeman and Durden and the maximum-likelihood classifier based on the complex Wishart distribution. The first step is to apply the Freeman and Durden decomposition to divide pixels into three scattering categories: surface scattering, volume scattering, and double-bounce scattering. To preserve the purity of scattering characteristics, pixels in a scattering category are restricted to be classified with other pixels in the same scattering category. An efficient and effective class initialization scheme is also devised to initially merge clusters from many small clusters in each scattering category by applying a merge criterion developed based on the Wishart distance measure. Then, the iterative Wishart classifier is applied. The stability in convergence is much superior to that of the previous algorithm using the entropy/anisotropy/Wishart classifier. Finally, an automated color rendering scheme is proposed, based on the classes' scattering category to code the pixels to resemble their natural color. This algorithm is also flexible and computationally efficient. The effectiveness of this algorithm is demonstrated using the Jet Propulsion Laboratory's AIRSAR and the German Aerospace Center's (DLR) E-SAR L-band polarimetric synthetic aperture radar images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.