Abstract
Stereoscopic image retargeting aims to manipulate the stereoscopic images to fit various devices with different resolutions and prescribed aspect ratios. With the development of various types of three-dimensional (3D) displays, stereoscopic image retargeting becomes increasingly popular in the field of computer graphics. In this paper, we propose an unsupervised stereoscopic image retargeting network (USIR-Net) to address the problem of stereoscopic image retargeting without label information. By exploring the inter-view correlation and disparity relationship of stereoscopic images, two unsupervised losses are developed to guide the learning of stereoscopic image retargeting model. First, in view of the inter-view correlation, a view synthesis loss is proposed to guarantee the generation of high-quality stereoscopic images with accurate inter-view relationship. Second, by exploiting the consistency of stereoscopic images before and after the retargeting, a stereo cycle consistency loss, which consists of a content consistency term and a disparity consistency term, is developed to preserve the structure information and prevent binocular disparity inconsistency. Quantitative and qualitative experimental results demonstrate that the proposed method achieves superior performance compared with state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.