Abstract
In this paper, we present a new and efficient clustering approach for scene analysis in sports video. This method is generic and does not require any prior domain knowledge. It performs in an unsupervised manner and relies on the scene likeness analysis of the shots in the video. The two most similar shots are merged into the same scene in each iteration. And this procedure is repeated until the merging stop criterion is satisfied. The stop criterion is defined based on a <i>J value </i>which is defined according to the Fisher Discriminant Function. We call this method <i>J-based Scene Clustering</i>. By using this method, the low-level video content representation-shots could be clustered into the midlevel video content representation-scenes, which are useful for high-level sports video content analysis such as playbreak parsing, story units detection, highlights extraction and summarization, etc. Experimental results obtained from various types of broadcast sports videos demonstrate the efficacy of the proposed approach. Moreover, in this paper, we also present a simple application of our scene clustering method to story units detection in periodic sports videos like archery video, diving video and so on. The experimental results are encouraging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.