Abstract

A spiking neural network (SNN) is a type of artificial neural network that operates based on discrete spikes to process timing information, similar to the manner in which the human brain processes real-world problems. In this paper, we propose a new spiking neural network (SNN) based on conventional, biologically plausible paradigms, such as the leaky integrate-and-fire model, spike timing-dependent plasticity, and the adaptive spiking threshold, by suggesting new biological models; that is, dynamic inhibition weight change, a synaptic wiring method, and Bayesian inference. The proposed network is designed for image recognition tasks, which are frequently used to evaluate the performance of conventional deep neural networks. To manifest the bio-realistic neural architecture, the learning is unsupervised, and the inhibition weight is dynamically changed; this, in turn, affects the synaptic wiring method based on Hebbian learning and the neuronal population. In the inference phase, Bayesian inference successfully classifies the input digits by counting the spikes from the responding neurons. The experimental results demonstrate that the proposed biological model ensures a performance improvement compared with other biologically plausible SNN models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.