Abstract
Since the speaker independent phoneme HMM based voice dialing system uses only the phoneme transcription of the input sentence, the storage space could be reduced greatly. However, the performance of the system is worse than that of the speaker dependent system due to the phoneme recognition errors generated when the speaker independent models are used. In order to solve this problem, a new method that jointly estimates the transformation vectors (bias) and transcriptions for the speaker adaptation is presented. The biases and transcriptions are estimated iteratively from the training data of each user with maximum likelihood approach to the stochastic matching using speaker independent phoneme models. Experimental result shows that the proposed method is superior to the conventional method using transcriptions only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.