Abstract
An important aspect of satellite image time series is the simultaneous access to spatial and temporal information. Various tools allow end users to interpret these data without having to browse the whole data set. In this paper, we intend to extract, in an unsupervised way, temporal evolutions at the pixel level and select those covering at least a minimum surface and having a high connectivity measure. To manage the huge amount of data and the large number of potential temporal evolutions, a new approach based on data-mining techniques is presented. We have developed a frequent sequential pattern extraction method adapted to that spatiotemporal context. A successful application to crop monitoring involving optical data is described. Another application to crustal deformation monitoring using synthetic aperture radar images gives an indication about the generic nature of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.