Abstract

Unsupervised seismic facies analysis provides an effective way to estimate reservoir properties by combining different seismic attributes through pattern recognition algorithms. However, without consistent geological information, parameters such as the number of facies and even the input seismic attributes are usually chosen in an empirical way. In this context, we propose two new semiautomatic alternative methods. In the first one, we use the clustering of the Kohonen self-organizing maps (SOMs) as a new way to build seismic facies maps and to estimate the number of seismic facies. In the second method, we use wavelet transforms to identify seismic trace singularities in each geologically oriented segment, and then we build the seismic facies map using the clustering of the SOM. We tested both methods using synthetic and real seismic data from the Namorado deepwater giant oilfield in Campos Basin, offshore Brazil. The results confirm that we can estimate the appropriate number of seismic facies through the clustering of the SOM. We also showed that we can improve the seismic facies analysis by using trace singularities detected by the wavelet transform technique. This workflow presents the advantage of being less sensitive to horizon interpretation errors, thus resulting in an improved seismic facies analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call