Abstract

This paper presents a fully automated method for segmenting articular knee cartilage and bone from in vivo 3-D dual echo steady state images. The magnetic resonance imaging (MRI) datasets were obtained from the Osteoarthritis Initiative (OAI) pilot study and include longitudinal images from controls and subjects with knee osteoarthritis (OA) scanned twice at each visit (baseline, 24 month). Initially, human experts segmented six MRI series. Five of the six resultant sets served as reference atlases for a multiatlas segmentation algorithm. The methodology created precise knee segmentations that were used to extract articular cartilage volume, surface area, and thickness as well as subchondral bone plate curvature. Comparison to manual segmentation showed Dice similarity coefficient (DSC) of 0.88 and 0.84 for the femoral and tibial cartilage. In OA subjects, thickness measurements showed test-retest precision ranging from 0.014 mm (0.6%) at the femur to 0.038 mm (1.6%) at the femoral trochlea. In the same population, the curvature test-retest precision ranged from 0.0005 mm(-1) (3.6%) at the femur to 0.0026 mm(-1) (11.7%) at the medial tibia. Thickness longitudinal changes showed OA Pearson correlation coefficient of 0.94 for the femur. In conclusion, the fully automated segmentation methodology produces reproducible cartilage volume, thickness, and shape measurements valuable for the study of OA progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.