Abstract
Retrieval based multivariate time series anomaly detection and diagnosis refer to identifying abnormal status in certain time steps and pinpointing the root cause input variables, i.e., sensors, by comparing a current time series segment and its relevant ones that are retrieved from huge amount of historical data. Binary coding with a deep neural network can be applied to reduce the computational cost of the retrieval tasks. However, it is hard to pinpoint the root cause sensors that are responsible for the anomaly, once multivariate time series segments are transformed into binary codes. In this paper, we present an unsupervised retrieval based multivariate time series anomaly detection and diagnosis method with deep binary coding model, to secure both efficiency and explainability. Specifically, we first transform input multivariate time series segments into low dimensional features with a temporal encoder. Subsequently, two hash functions predict two binary codes with different lengths from each feature. The binary codes with two different lengths can contribute to accelerate both anomaly detection and anomaly diagnosis. Experiments performed on datasets from various domains including real optical network, demonstrate the effectiveness and efficiency of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.