Abstract
Intelligently identifying rail vehicle faults instigating running instability from carbody floor acceleration is essential to ensure operational safety and reduce maintenance costs. However, the vehicle-track interaction's nonlinearities and scarcity of running instability occurrences complicate the task. The running instability is an anomaly in the vehicle-track interaction. Thus, we propose unsupervised anomaly detection and clustering algorithms based iVRIDA framework to detect and identify running instability and corresponding root cause. We deploy and compare the performance of the PCA-AD (baseline), Sparse Autoencoder (SAE-AD), and LSTM-Encoder-Decoder (LSTMEncDec-AD) model to detect the running instability occurrences.Furthermore, we deploy a k-means algorithm on latent space to identify clusters associated with root causes instigating instability. We deployed the iVRIDA framework on simulated and measured accelerations of European high-speed rail vehicles where SAE-AD and LSTMEncDec-AD models showed 97% accuracy. The proposed method contributes to smart maintenance by intelligently identifying anomalous vehicle-track interaction events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.