Abstract

Unsupervised classification is a highly important task of machine learning methods. Although achieving great success in supervised classification, support vector machine (SVM) is much less utilized to classify unlabeled data points, which also induces many drawbacks including sensitive to nonlinear kernels and random initializations, high computational cost, unsuitable for imbalanced datasets. In this paper, to utilize the advantages of SVM and overcome the drawbacks of SVM-based clustering methods, we propose a completely new two-stage unsupervised classification method with no initialization: a new unsupervised kernel-free quadratic surface SVM (QSSVM) model is proposed to avoid selecting kernels and related kernel parameters, then a golden-section algorithm is designed to generate the appropriate classifier for balanced and imbalanced data. By studying certain properties of proposed model, a convergent decomposition algorithm is developed to implement this non-covex QSSVM model effectively and efficiently (in terms of computational cost). Numerical tests on artificial and public benchmark data indicate that the proposed unsupervised QSSVM method outperforms well-known clustering methods (including SVM-based and other state-of-the-art methods), particularly in terms of classification accuracy. Moreover, we extend and apply the proposed method to credit risk assessment by incorporating the T-test based feature weights. The promising numerical results on benchmark personal credit data and real-world corporate credit data strongly demonstrate the effectiveness, efficiency and interpretability of proposed method, as well as indicate its significant potential in certain real-world applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call