Abstract

This paper presents a novel unsupervised image classification method for polarimetric synthetic aperture radar (PolSAR) data. The proposed method is based on a discriminative clustering framework that explicitly relies on a discriminative supervised classification technique to perform unsupervised clustering. To implement this idea, we design an energy function for unsupervised PolSAR image classification by combining a supervised softmax regression model with a Markov random field smoothness constraint. In this model, both the pixelwise class labels and classifiers are taken as unknown variables to be optimized. Starting from the initialized class labels generated by Cloude–Pottier decomposition and $K$ -Wishart distribution hypothesis, we iteratively optimize the classifiers and class labels by alternately minimizing the energy function with respect to them. Finally, the optimized class labels are taken as the classification result, and the classifiers for different classes are also derived as a side effect. We apply this approach to real PolSAR benchmark data. Extensive experiments justify that our approach can effectively classify the PolSAR image in an unsupervised way and produce higher accuracies than the compared state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.