Abstract
Most person re-identification (re-ID) approaches are based on supervised learning, which requires manually annotated data. However, it is not only resource-intensive to acquire identity annotation but also impractical for large-scale data. To relieve this problem, we propose a cross-camera unsupervised approach that makes use of unsupervised style-transferred images to jointly optimize a convolutional neural network (CNN) and the relationship among the individual samples for person re-ID. Our algorithm considers two fundamental facts in the re- ID task, i.e., variance across diverse cameras and similarity within the same identity. In this paper, we propose an iterative framework which overcomes the camera variance and achieves across-camera similarity exploration. Specifically, we apply an unsupervised style transfer model to generate style-transferred training images with different camera styles. Then we iteratively exploit the similarity within the same identity from both the original and the style-transferred data. We start with considering each training image as a different class to initialize the Convolutional Neural Network (CNN) model. Then we measure the similarity and gradually group similar samples into one class, which increases similarity within each identity. We also introduce a diversity regularization term in the clustering to balance the cluster distribution. The experimental results demonstrate that our algorithm is not only superior to state-of-the-art unsupervised re-ID approaches, but also performs favorably compared with other competing unsupervised domain adaptation methods (UDA) and semi-supervised learning methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.