Abstract
Outlier detection is to separate anomalous data from inliers in the dataset. Recently, the most deep learning methods of outlier detection leverage an auxiliary reconstruction task by assuming that outliers are more difficult to recover than normal samples (inliers). However, it is not always true in deep auto-encoder (AE) based models. The auto-encoder based detectors may recover certain outliers even if outliers are not in the training data, because they do not constrain the feature learning. Instead, we think outlier detection can be done in the feature space by measuring the distance between outliers' features and the consistency feature of inliers. To achieve this, we propose an unsupervised outlier detection method using a memory module and a contrastive learning module (MCOD). The memory module constrains the consistency of features, which merely represent the normal data. The contrastive learning module learns more discriminative features, which boosts the distinction between outliers and inliers. Extensive experiments on four benchmark datasets show that our proposed MCOD performs well and outperforms eleven state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.