Abstract
Catastrophic forgetting is a well studied problem in artificial neural networks in which past representations are rapidly lost as new representations are constructed. We hypothesize that such forgetting occurs due to overlap in the hidden layers, as well as the global nature in which neurons encode information. We introduce a novel technique to mitigate forgetting which effectively minimizes activation overlapping by using online clustering to effectively select neurons in the feedforward and back-propagation phases. We demonstrate the memory retention properties of the proposed scheme using the MNIST digit recognition data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.