Abstract

We easily recognize objects and faces acrossa myriad of retinal images produced by each object. One hypothesis is that this tolerance (a.k.a. "invariance") is learned by relying on the fact that object identities are temporally stable. While we previously found neuronal evidence supporting this idea at the top of the nonhuman primate ventral visual stream (inferior temporal cortex, or IT), we here test if this is a general tolerance learning mechanism. First, we found that the same type of unsupervised experience that reshaped IT position tolerance also predictably reshaped IT size tolerance, and the magnitude of reshaping was quantitatively similar. Second, this tolerance reshaping can be induced under naturally occurring dynamic visual experience, even without eye movements. Third, unsupervised temporal contiguous experience can build new neuronal tolerance. These results suggest that the ventral visual stream uses a general unsupervised tolerance learning algorithm to build its invariant object representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.