Abstract

Unsupervised multi-task learning exploits the shared knowledge to improve performances by learning related tasks simultaneously. In this paper, we propose an unsupervised multi-task learning method with hierarchical data structure. It strengthens similarities between instances in the same cluster, and increases diversities of instances by utilizing instances from related clusters. Firstly, we introduce Representative Dual Features (RepDFs) that possess representative capabilities in the feature space and the sample space for each cluster concurrently. Secondly, we explore hierarchical structural similarities between clusters in related tasks from the topological perspective: 1) feature basis matrix, which learns compact representations for features in the feature space; and 2) sample refined matrix, which preserves local structures in the sample space. Thirdly, we adopt RepDFs to measure correlations between clusters and incorporate hierarchical structural similarities to conduct knowledge transfer among tasks. Experimental results on real-world data sets demonstrate the effectiveness and superiority of the proposed method over existing multi-task clustering methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.