Abstract
PurposeWe aim to present unsupervised machine learning-based analysis of clinical features, bone mineral density (BMD) features, and medical care costs of Rotator cuff tears (RCT).Patients and MethodsFifty-three patients with RCT were reviewed, the clinical features, BMD features, and medical care costs were collected and analyzed by descriptive statistics. Furtherly, unsupervised machine learning (UML) algorithm was used for dimensionality reduction and cluster analysis of the RCT data.ResultsThere were 26 males and 27 females. The patients were divided into four subgroups using the UML algorithm. There were significant differences among four subgroups regarding trauma exposure, full-thickness supraspinatus tendon tears, infraspinatus tendon tear, subscapularis tendon tear, BMD distribution, medial row anchors, lateral row anchors, total medical care costs, and consumables costs. We observed the highest frequency of trauma exposure, infraspinatus tendon tear, subscapularis tendon tear, osteoporosis, the highest number of medial row anchors, lateral row anchors, total medical care costs, and consumables costs in subgroup II.ConclusionThe unsupervised machine learning-based analysis of RCT can provide clinically meaningful classification, which shows good interpretability and contribute to a better understanding of RCT. The significance of the results is limited due to the small number of samples, a larger follow-up study is needed to confirm the encouraging results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.