Abstract

Four-dimensional scanning transmission electron microscopy, coupled with a wide array of data analytics, has unveiled new insights into complex materials. Here, we introduce a straightforward unsupervised machine learning approach that entails dimensionality reduction and clustering with minimal hyperparameter tuning to semi-automatically identify unique coexisting structures in metallic alloys. Applying cepstral transformation to the original diffraction dataset improves this process by effectively isolating phase information from potential signal ambiguity caused by sample tilt and thickness variations, commonly observed in electron diffraction patterns. In a case study of a NiTiHfAl shape memory alloy, conventional scanning transmission electron microscopy imaging struggles to accurately identify a low-contrast precipitate at lower magnifications, posing challenges for microscale analyses. We find that our method efficiently separates multiple coherent structures while using objective means of determining hyperparameters. Furthermore, we demonstrate how the clustering result facilitates more robust strain mapping to provide immediate and quantitative structural insights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.