Abstract
Lexical Simplification is the task of replacing complex words with simpler alternatives. We propose a novel, unsupervised approach for the task. It relies on two resources: a corpus of subtitles and a new type of word embeddings model that accounts for the ambiguity of words. We compare the performance of our approach and many others over a new evaluation dataset, which accounts for the simplification needs of 400 non-native English speakers. The experiments show that our approach outperforms state-of-the-art work in Lexical Simplification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.