Abstract

This tutorial studies unsupervised learning methods. Unsupervised learning methods are techniques that aim at reducing the dimension of data (covariables, features), cluster cases with similar features, and graphically illustrate high dimensional data. These techniques do not consider response variables, but they are solely based on the features themselves by studying incorporated similarities. For this reason, these methods belong to the field of unsupervised learning methods. The methods studied in this tutorial comprise principal components analysis (PCA) and bottleneck neural networks (BNNs) for dimension reduction, K-means clustering, K-medoids clustering, partitioning around medoids (PAM) algorithm and clustering with Gaussian mixture models (GMMs) for clustering, and variational autoencoder (VAE), t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection (UMAP), self-organizing maps (SOM) and Kohonen maps for visualizing high dimensional data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.