Abstract

Background modeling algorithms are commonly used in camera setups for foreground object detection. Typically, these algorithms need adjustment of their parameters towards achieving optimal performance in different scenarios and/or lighting conditions. This is a tedious process requiring considerable effort by expert users. In this work we propose a novel, fully automatic method for the tuning of foreground detection parameters in calibrated multicamera systems. The proposed method requires neither user intervention nor ground truth data. Given a set of such parameters, we define a fitness function based on the consensus built from the multicamera setup regarding whether points belong to the scene foreground or background. The maximization of this fitness function through Particle Swarm Optimization leads to the adjustment of the foreground detection parameters. Extensive experimental results confirm the effectiveness of the adopted approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.