Abstract

In this paper, an unsupervised-learning method for events-identification in φ-OTDR fiber-optic distributed vibration sensor is proposed. The different vibration-events including blowing, raining, direct and indirect hitting, and noise-induced false vibration are clustered by the k-means algorithm. The equivalent classification accuracy of 99.4% has been obtained, compared with the actual classes of vibration-events in the experiment. With the cluster-number of 3, the maximal Calinski-Harabaz index and Silhouette coefficient are obtained as 2653 and 0.7206, respectively. It is found that our clustering method is effective for the events-identification of φ-OTDR without any prior labels, which provides an interesting application of unsupervised-learning in self-classification of vibration-events for φ-OTDR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.