7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.neucom.2010.09.023
Copy DOIJournal: Neurocomputing | Publication Date: Dec 21, 2010 |
Citations: 43 |
This paper demonstrates how unsupervised learning based on Hebb-like mechanisms is sufficient for training second-order neural networks to perform different types of motion analysis. The paper studies the convergence properties of the network in several conditions, including different levels of noise and motion coherence and different network configurations. We demonstrate the effectiveness of a novel variability dependent learning mechanism, which allows the network to learn under conditions of large feature similarity thresholds, which is crucial for noise robustness. The paper demonstrates the particular relevance of second-order neural networks and therefore correlation based approaches as contributing mechanisms for directional selectivity in the retina.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.