Abstract

Robust model fitting is a core algorithm in several computer vision applications. Despite being studied for decades, solving this problem efficiently for datasets that are heavily contaminated by outliers is still challenging: due to the underlying computational complexity. A recent focus has been on learning-based algorithms. However, most of these approaches are supervised (which require a large amount of labelled training data). In this paper, we introduce a novel unsupervised learning framework: that learns to directly (without labelled data) solve robust model fitting. Moreover, unlike other learning-based methods, our work is agnostic to the underlying input features, and can be easily generalized to a wide variety of LP-type problems with quasi-convex residuals. We empirically show that our method outperforms existing (un)supervised learning approaches, and also achieves competitive results compared to traditional (non-learning-based) methods. Our approach is designed to try to maximise consensus (MaxCon), similar to the popular RANSAC. The basis of our approach, is to adopt a Reinforcement Learning framework. This requires designing appropriate reward functions, and state encodings. We provide a family of reward functions, tunable by choice of a parameter. We also investigate the application of different basic and enhanced Q-learning components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.