Abstract

Learning human mobility behaviors from location-sensing data are crucial to mobility data mining because of its potential to address a range of analytical purposes in mobile context reasoning, including exploration, inference, and prediction. However, existing approaches suffer from two practical problems: temporal and spatial sparsity. To address these shortcomings, we present two unsupervised learning methods to model the mobility behaviors of multiple users (i.e., a population), considering efficiency and accuracy. These methods intelligently overcome the sparsity in individual data by seeking temporal commonality among users’ heterogeneous location behaviors. The advantages of our models are highlighted through experiments on several real-world mobility data sets, which also show how our methods can realize the three analytical purposes in a unified manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.