Abstract
Network intrusion detection systems are useful tools that support system administrators in detecting various types of intrusions and play an important role in monitoring and analyzing network traffic. In particular, anomaly detection-based network intrusion detection systems are widely used and are mainly implemented in two ways: (1) a supervised learning approach trained using labeled data and (2) an unsupervised learning approach trained using unlabeled data. Most studies related to intrusion detection systems focus on supervised learning. However, the process of acquiring labeled data is expensive, requiring manual labeling by network experts. Therefore, it is worthwhile investigating the development of unsupervised learning approaches for intrusion detection systems. In this study, we developed a network intrusion detection system using an unsupervised learning algorithm autoencoder and verified its performance. As our results show, our model achieved an accuracy of 91.70%, which outperforms previous studies that achieved 80% accuracy using cluster analysis algorithms. Our results provide a practical guideline for developing network intrusion detection systems based on autoencoders and significantly contribute to the exploration of unsupervised learning techniques for various network intrusion detection systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.