Abstract

Question answering systems assist users in satisfying their information needs more precisely by providing focused responses to their questions. Among the various systems developed for such a purpose, community-based question answering has recently received researchers’ attention due to the large amount of user-generated questions and answers in social question-and-answer platforms. Reusing such data sources requires an accurate information retrieval component enhanced by a question classifier. The question classification gives the system the possibility to have information about question categories to focus on questions and answers from relevant categories to the input question. In this paper, we propose a new method based on unsupervised Latent Dirichlet Allocation for classifying questions in community-based question answering. Our method first uses unsupervised topic modeling to extract topics from a large amount of unlabeled data. The learned topics are then used in the training phase to find their association with the available category labels in the training data. The category mixture of topics is finally used to predict the label of unseen data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.