Abstract

Language model (LM) adaptation is often achieved by combining a generic LM with a topic-specific model that is more relevant to the target document. Unlike previous work on unsupervised LM adaptation, in this paper we propose to leverage named entity (NE) information for topic analysis and LM adaptation. We investigate two topic modeling approaches, latent Dirichlet allocation (LDA) and clustering, and proposed a new mixture topic model for LDA based LM adaptation. Our experiments for N-best list rescoring have shown that this new adaptation framework using NE information and topic analysis outperforms the baseline generic N-gram LM based on a state-of-the-art Mandarin recognition system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.