Abstract
AbstractWe propose a novel unsupervised keyphrase extraction approach that filters candidate keywords using outlier detection. It starts by training word embeddings on the target document to capture semantic regularities among the words. It then uses the minimum covariance determinant estimator to model the distribution of non-keyphrase word vectors, under the assumption that these vectors come from the same distribution, indicative of their irrelevance to the semantics expressed by the dimensions of the learned vector representation. Candidate keyphrases only consist of words that are detected as outliers of this dominant distribution. Empirical results show that our approach outperforms state-of-the-art and recent unsupervised keyphrase extraction methods.KeywordsUnsupervised keyphrase extractionOutlier detectionMCD estimator
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.