Abstract
Experimental progress in qubit manufacturing calls for the development of new theoretical tools to analyze quantum data. We show how an unsupervised machine-learning technique can be used to understand short-range entangled many-qubit systems using data of local measurements. The method successfully constructs the phase diagram of a cluster-state model and detects the respective order parameters of its phases, including string order parameters. For the toric code subject to external magnetic fields, the machine identifies the explicit forms of its two stabilizers. Prior information of the underlying Hamiltonian or the quantum states is not needed; instead, the machine outputs their characteristic observables. Our work opens the door for a first-principles application of hybrid algorithms that aim at strong interpretability without supervision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.