Abstract
We propose an approach for unsupervised image segmentation based on the Markov random field by using the Bethe approximation. We first derive the Bayesian information criterion under the Bethe approximation and then propose an iterative algorithm to search a model which fits the image data best. For this aim, we derive a criterion for merging two components among several components in terms of a perturbation expansion. Namely, annihilation of components is implemented by merging two components into one component after each convergence of the supervised segmentation with a fixed number of components. We find by numerical experiments that the optimal number of components is selected from the series of local optima with different numbers of components and the best result for segmentation is obtained with good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.