Abstract

Embedding images into a low dimensional space has a wide range of applications: visualization, clustering, and pre-processing for supervised learning. Traditional dimension reduction algorithms assume that the examples densely populate the manifold. Image databases tend to break this assumption, having isolated islands of similar images instead. In this work, we propose a novel approach that embeds images into a low dimensional Euclidean space, while preserving local image similarities based on their scale invariant feature transform (SIFT) vectors. We make no neighborhood assumptions in our embedding. Our algorithm can also embed the images in a discrete grid, useful for many visualization tasks. We demonstrate the algorithm on images with known categories and compare our accuracy favorably to those of competing algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.