Abstract

A linear pseudo-inverse method for unsupervised illuminant recovery from natural scenes is presented. The algorithm, which uses a digital RGB camera, selects the naturally occurring bright areas (not necessarily the white ones) in natural images and converts the RGB digital counts directly into the spectral power distribution of the illuminants using a learning-based spectral procedure. Computations show a good spectral and colorimetric performance when only three sensors (a three-band RGB camera) are used. These results go against previous findings concerning the recovery of spectral reflectances and radiances, which claimed that the greater the number of sensors, the better the spectral performance. Combining the device with the appropriate computations can yield spectral information about objects and illuminants simultaneously, avoiding the need for spectroradiometric measurements. The method works well and needs neither a white reference located in the natural scene nor direct measurements of the spectral power distribution of the light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.