Abstract

Machine-learning driven models have proven to be powerful tools for the identification of phases of matter. In particular, unsupervised methods hold the promise to help discover new phases of matter without the need for any prior theoretical knowledge. While for phases characterized by a broken symmetry, the use of unsupervised methods has proven to be successful, topological phases without a local order parameter seem to be much harder to identify without supervision. Here, we use an unsupervised approach to identify boundaries of the topological phases. We train artificial neural nets to relate configurational data or measurement outcomes to quantities like temperature or tuning parameters in the Hamiltonian. The accuracy of these predictive models can then serve as an indicator for phase transitions. We successfully illustrate this approach on both the classical Ising gauge theory as well as on the quantum ground state of a generalized toric code.

Highlights

  • Identifying phase transitions is one of the key questions in theoretical and experimental condensed matter physics alike

  • We train artificial neural nets to relate configurational data or measurement outcomes to quantities like temperature or tuning parameters in the Hamiltonian. The accuracy of these predictive models can serve as an indicator for phase transitions. We successfully illustrate this approach on both the classical Ising gauge theory as well as on the quantum ground state of a generalized toric code

  • Due to the lack of local order parameters, phases exhibiting topological order present a challenging task for unsupervised methods

Read more

Summary

April 2020

Unsupervised methods hold the promise to help discover new phases of matter this work must maintain attribution to the without the need for any prior theoretical knowledge. While for phases characterized by a broken author(s) and the title of symmetry, the use of unsupervised methods has proven to be successful, topological phases without a the work, journal citation and DOI. We use an unsupervised approach to identify boundaries of the topological phases. We train artificial neural nets to relate configurational data or measurement outcomes to quantities like temperature or tuning parameters in the Hamiltonian. The accuracy of these predictive models can serve as an indicator for phase transitions. We successfully illustrate this approach on both the classical Ising gauge theory as well as on the quantum ground state of a generalized toric code

Introduction
The Ising gauge theory
The toric code and its generalizations
Discussion
Detection of quasiparticles
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call