Abstract

Hyperspectral image (HSI) provided with a substantial number of correlated bands causes calculation consumption and an undesirable "dimension disaster" problem for the classification. Band selection (BS) is an effective measure to reduce the information redundancy with the physics spectrum preserved for HSI. Although the existing BS methods have achieved noticeable progress, the correlation between neighbor bands still needs to be mined deeply for an effective selection criterion. This paper proposes a BS approach to collecting the discriminative band subset for hyperspectral image classification (HSIC), which adopts the self-supervised learning paradigm to implement the BS by auxiliary spectrum rebuilding task. In specific, we utilized a Convolutional neural network (CNN) and Graph Convolutional Network (GCN) for the spectral-spatial feature extraction. Next, GCN and CNN are developed for the refinement of the band correlation sequentially. Afterward, the selected bands in terms of the acquired correlation are fed into the presented self-supervised spectrum rebuilding network for spectral reconstruction. Simultaneously, the proposed architecture completed the selection with the optimization of the band reconstruction by a defined loss function. In this way, we supply substitution for selection criterion and path searching through the end-to-end framework. The extensive experimental results and analysis demonstrated that the proposed hybrid architecture provided a competitive band subset for the classification, and the accuracies with different types of classifiers are more effective than the compared BS methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.