Abstract
Recently, there is an increasing interest in obtaining the relational structures of the environment in the Reinforcement Learning community. However, the resulting “relations” are not the discrete, logical predicates compatible with the symbolic reasoning such as classical planning or goal recognition. Meanwhile, Latplan (Asai and Fukunaga 2018) bridged the gap between deep-learning perceptual systems and symbolic classical planners. One key component of the system is a Neural Network called State AutoEncoder (SAE), which encodes an image-based input into a propositional representation compatible with classical planning. To get the best of both worlds, we propose First-Order State AutoEncoder, an unsupervised architecture for grounding the first-order logic predicates and facts. Each predicate models a relationship between objects by taking the interpretable arguments and returning a propositional value. In the experiment using 8Puzzle and a photo-realistic Blocksworld environment, we show that (1) the resulting predicates capture the interpretable relations (e.g., spatial), (2) they help to obtain the compact, abstract model of the environment, and finally, (3) the resulting model is compatible with symbolic classical planning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.