Abstract

The performanceof previous machine learning models for gait phase is only satisfactory under limited conditions. First, they produce accurate estimations only when the ground truth of the gait phase (of the target subject) is known. In contrast, when the ground truth of a target subject is not used to train an algorithm, the estimation error noticeably increases. Expensive equipment is required to precisely measure the ground truth of the gait phase. Thus, previous methods have practical shortcoming when they are optimized for individual users. To address this problem, this study introduces an unsupervised domain adaptation technique for estimation without the true gait phase of the target subject. Specifically, a domain-adversarial neural network was modified to perform regression on continuous gait phases. Second, the accuracy of previous models can be degraded by variations in stride time. To address this problem, this study developed an adaptive window method that actively considers changes in stride time. This model considerably reduces estimation errors for walking and running motions. Finally, this study proposed a new method to select the optimal source subject (among several subjects) by defining the similarity between sequential embedding features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.