Abstract

In this paper, we propose a new feature selection method called kernel fisher discriminant analysis and regression learning based algorithm for unsupervised feature selection. The existing feature selection methods are based on either manifold learning or discriminative techniques, each of which has some shortcomings. Although some studies show the advantages of two-steps method benefiting from both manifold learning and discriminative techniques, a joint formulation has been shown to be more efficient. To do so, we construct a global discriminant objective term of a clustering framework based on the kernel method. We add another term of regression learning into the objective function, which can impose the optimization to select a low-dimensional representation of the original dataset. We use L2,1-norm of the features to impose a sparse structure upon features, which can result in more discriminative features. We propose an algorithm to solve the optimization problem introduced in this paper. We further discuss convergence, parameter sensitivity, computational complexity, as well as the clustering and classification accuracy of the proposed algorithm. In order to demonstrate the effectiveness of the proposed algorithm, we perform a set of experiments with different available datasets. The results obtained by the proposed algorithm are compared against the state-of-the-art algorithms. These results show that our method outperforms the existing state-of-the-art methods in many cases on different datasets, but the improved performance comes with the cost of increased time complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.