Abstract

Scene classification plays an important role in the interpretation of remotely sensed high-resolution imagery. However, the performance of scene classification strongly relies on the discriminative power of feature representation, which is generally hand-engineered and requires a huge amount of domain-expert knowledge as well as time-consuming hand tuning. Recently, unsupervised feature learning (UFL) provides an alternative way to automatically learn discriminative feature representation from images. However, the performances achieved by conventional UFL methods are not comparable to the state-of-the-art, mainly due to the neglect of locally substantial image structures. This paper presents an improved UFL algorithm based on spectral clustering, named UFL-SC, which cannot only adaptively learn good local feature representations but also discover intrinsic structures of local image patches. In contrast to the standard UFL pipeline, UFL-SC first maps the original image patches into a low-dimensional and intrinsic feature space by linear manifold analysis techniques, and then learns a dictionary (e.g., using K-means clustering) on the patch manifold for feature encoding. To generate a feature representation for each local patch, an explicit parameterized feature encoding method, i.e., triangle encoding, is applied with the learned dictionary on the same patch manifold. The holistic feature representation of image scenes is finally obtained by building a bag-of-visual-words (BOW) model of the encoded local features. Experiments demonstrate that the proposed UFL-SC algorithm can extract efficient local features for image scenes and show comparable performance to the state-of-the-art approach on open scene classification benchmark.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call