Abstract

Signal processing on graph offers the ability to define relationships of high-dimensional data on graph. In this paper, an unsupervised feature extraction method using graph for hyperspectral imagery is proposed, which incorporates collaborative representation using $\ell _2$ -norm regularization with locality constrained property into graph construction, named collaboration-competition preserving graph embedding. First, an undirected and weighted graph is constructed to exploit the data structure. Then, a weight matrix of edge in graph is built by formulating the combined collaborative-competitive representation into a convex optimization problem. The constructed graph is expected to reveal local intrinsic manifold and global geometry information of hyperspectral data. The superiority of the proposed graph-based unsupervised feature extraction method, compared with other traditional and state-of-the-art methods, is demonstrated by verifying the classification accuracy on four typical hyperspectral datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.