Abstract

ABSTRACTDimensionality reduction plays an important role in pattern recognition tasks. Locality preserving projection and neighbourhood preserving embedding are popular unsupervised feature extraction methods, which try to preserve a certain local structure in the low-dimensional subspace. However, only considering the local neighbour information will limit the methods to achieve higher recognition accuracy. In this paper, an unsupervised double weight graphs based discriminant analysis method (uDWG-DA) is proposed. First, uDWG-DA considers both similar and dissimilar relationships among samples by using double weight graphs. In order to explore the dissimilar information, a new partitioning strategy is proposed to divide the data set into different clusters, where samples of different clusters are dissimilar. Then, based on L2,1 norm, uDWG-DA finds the optimal projection to not only preserve the similar local structure but also increase the separability among different clusters of the data set. Experiments on four hyperspectral images validate the advantage and feasibility of the proposed method compared with other dimensionality reduction methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.