Abstract
We investigate the problem of adapting a recognition system with multiple acoustic models to a new domain in unsupervised mode. We compare maximum likelihood and discriminative approaches for unsupervised domain adaptation. Different adaptation data selection methods and adaptation strategies are investigated, using a baseline meeting recognition system and adaptation data from a congressional committee web site. Experiments show that one should avoid adapting all acoustic models to the same recognition output, and that ASR confidence estimates improve results when used for rejecting low-quality ASR output. The results show 8% relative overall improvement from unsupervised adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.