Abstract
Unsupervised domain adaptation (UDA) is to make predictions on unlabeled target domain by learning the knowledge from a label-rich source domain. In practice, existing UDA approaches mainly focus on minimizing the discrepancy between different domains by mini-batch training, where only a few instances are accessible at each iteration. Due to the randomness of sampling, such a batch-level alignment pattern is unstable and may lead to misalignment. To alleviate this risk, we propose class-aware memory alignment (CMA) that models the distributions of the two domains by two auxiliary class-aware memories and performs domain adaptation on these predefined memories. CMA is designed with two distinct characteristics: class-aware memories that create two symmetrical class-aware distributions for different domains and two reliability-based filtering strategies that enhance the reliability of the constructed memory. We further design a unified memory-based loss to jointly improve the transferability and discriminability of features in the memories. State-of-the-art (SOTA) comparisons and careful ablation studies show the effectiveness of our proposed CMA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.