Abstract
Synthetic images are one of the most promising solutions to avoid high costs associated with generating annotated datasets to train supervised convolutional neural networks (CNN). However, to allow networks to generalize knowledge from synthetic to real images, domain adaptation methods are necessary. This paper implements unsupervised domain adaptation (UDA) methods on an anchorless object detector. Given their good performance, anchorless detectors are increasingly attracting attention in the field of object detection. While their results are comparable to the well-established anchor-based methods, anchorless detectors are considerably faster. In our work, we use CenterNet, one of the most recent anchorless architectures, for a domain adaptation problem involving synthetic images. Taking advantage of the architecture of anchorless detectors, we propose to adjust two UDA methods, viz., entropy minimization and maximum squares loss, originally developed for segmentation, to object detection. Our results show that the proposed UDA methods can increase the mAPfrom61 %to69 %with respect to direct transfer on the considered anchorless detector. The code is available: https://github.com/scheckmedia/centernet-uda.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.