Abstract

Face anti-spoofing (a.k.a. presentation attack detection) has recently emerged as an active topic with great significance for both academia and industry due to the rapidly increasing demand in user authentication on mobile phones, PCs, tablets, and so on. Recently, numerous face spoofing detection schemes have been proposed based on the assumption that training and testing samples are in the same domain in terms of the feature space and marginal probability distribution. However, due to unlimited variations of the dominant conditions (illumination, facial appearance, camera quality, and so on) in face acquisition, such single domain methods lack generalization capability, which further prevents them from being applied in practical applications. In light of this, we introduce an unsupervised domain adaptation face anti-spoofing scheme to address the real-world scenario that learns the classifier for the target domain based on training samples in a different source domain. In particular, an embedding function is first imposed based on source and target domain data, which maps the data to a new space where the distribution similarity can be measured. Subsequently, the Maximum Mean Discrepancy between the latent features in source and target domains is minimized such that a more generalized classifier can be learned. State-of-the-art representations including both hand-crafted and deep neural network learned features are further adopted into the framework to quest the capability of them in domain adaptation. Moreover, we introduce a new database for face spoofing detection, which contains more than 4000 face samples with a large variety of spoofing types, capture devices, illuminations, and so on. Extensive experiments on existing benchmark databases and the new database verify that the proposed approach can gain significantly better generalization capability in cross-domain scenarios by providing consistently better anti-spoofing performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.