Abstract
Electron microscopy (EM) image denoising is critical for visualization and subsequent analysis. Despite the remarkable achievements of deep learning-based non-blind denoising methods, their performance drops significantly when domain shifts exist between the training and testing data. To address this issue, unpaired blind denoising methods have been proposed. However, these methods heavily rely on image-to-image translation and neglect the inherent characteristics of EM images, limiting their overall denoising performance. In this paper, we propose the first unsupervised domain adaptive EM image denoising method, which is grounded in the observation that EM images from similar samples share common content characteristics. Specifically, we first disentangle the content representations and the noise components from noisy images and establish a shared domain-agnostic content space via domain alignment to bridge the synthetic images (source domain) and the real images (target domain). To ensure precise domain alignment, we further incorporate domain regularization by enforcing that: the pseudo-noisy images, reconstructed using both content representations and noise components, accurately capture the characteristics of the noisy images from which the noise components originate, all while maintaining semantic consistency with the noisy images from which the content representations originate. To guarantee lossless representation decomposition and image reconstruction, we introduce disentanglement-reconstruction invertible networks. Finally, the reconstructed pseudo-noisy images, paired with their corresponding clean counterparts, serve as valuable training data for the denoising network. Extensive experiments on synthetic and real EM datasets demonstrate the superiority of our method in terms of image restoration quality and downstream neuron segmentation accuracy. Our code is publicly available at https://github.com/sydeng99/DADn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.